Growth cone collapse and neurite retractions: an approach to examine X-irradiation affects on neuron cells.
نویسندگان
چکیده
The growth cone is a structure at the terminal of a neurite that plays an important role in the growth of the neurite. The growth cone collapse assay is considered to be a useful method to quantify the effects of various factors on nerve tissue. Here, we investigated the effect of x-irradiation on growth cones and neurites and also the comparative radiosensitivity of different neurons. Dorsal root ganglia and sympathetic chain ganglion were isolated from day-8 and -16 chick embryos and cultured for 20 h. Neurons were then exposed to x-irradiation and morphological changes were quantitatively evaluated by growth cone collapse assay. Cell viability was examined using TUNEL and WST-1 assays. The results showed that radiation induced growth cone collapse and neurite retraction in a time- and exposure-responsive manner. Growth cone collapse, apoptosis and WST-1 assays showed that no significant difference between the neurons throughout the study period (p > or = 0.5) after irradiation. Both types of day-8 neurons were more radio-sensitive than day-16 neurons (p < or = 0.05). The time course of the growth cone collapse was significantly correlated with the apoptotic and cell viability responses at different irradiation doses. Growth cone collapse may represent a useful marker for assaying the effect of x-irradiation on normal cell neurons.
منابع مشابه
Modulation of the Inhibitory Substrate Properties of Oligodendrocytes by Platelet-Derived Growth Factor -- Lang et al. 16 (18): 5741 -- Journal of Neuroscience
Although growth cones typically collapse after encountering O1/galactocerebroside (GalC)-positive oligodendrocytes, the majority of growth cones traversed oligodendrocytes, which were raised for 8–10 d in medium containing 10 ng/ml plateletderived growth factor (PDGF). Oligodendrocytes raised 8–10 d in control medium caused growth cone collapse as they normally do, but failed to elicit this res...
متن کاملDorsal root ganglion neurons react to semaphorin 3A application through a biphasic response that requires multiple myosin II isoforms.
Growth cone responses to guidance cues provide the basis for neuronal pathfinding. Although many cues have been identified, less is known about how signals are translated into the cytoskeletal rearrangements that steer directional changes during pathfinding. Here we show that the response of dorsal root ganglion (DRG) neurons to Semaphorin 3A gradients can be divided into two steps: growth cone...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملOligodendrocytes arrest neurite growth by contact inhibition.
We have used video time-lapse microscopy to analyze in vitro the interactions of growth cones of newborn rat dorsal root ganglion cells with dissociated young rat CNS glial cells present in the cultures at low density. To provide optimal conditions for neurite extension, cells were grown on laminin and in NGF-supplemented medium. Our initial observation showed that there are 2 subpopulations of...
متن کاملModulation of the inhibitory substrate properties of oligodendrocytes by platelet-derived growth factor.
Although growth cones typically collapse after encountering O1/galactocerebroside (GalC)-positive oligodendrocytes, the majority of growth cones traversed oligodendrocytes, which were raised for 8-10 d in medium containing 10 ng/ml platelet-derived growth factor (PDGF). Oligodendrocytes raised 8-10 d in control medium caused growth cone collapse as they normally do, but failed to elicit this re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of radiation research
دوره 49 5 شماره
صفحات -
تاریخ انتشار 2008